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Abstract

A nonparametric Bayesian model is proposed for segmenting time-evolving mul-

tivariate spatial point process data. An inhomogeneous Poisson process is assumed,

with a logistic stick-breaking process (LSBP) used to encourage piecewise-constant

spatial Poisson intensities. The LSBP explicitly favors spatially contiguous segments,

and infers the number of segments based on the observed data. The temporal dynam-

ics of the segmentation and of the Poisson intensities is modeled with exponential

correlation in time, implemented in the form of a first-order autoregressive model

for uniformly sampled discrete data, and via a Gaussian process with an exponential

kernel for general temporal sampling. We consider and compare two different in-

ference techniques: a Markov chain Monte Carlo sampler, which has relatively high

computational complexity; and an approximate and efficient variational Bayesian

analysis. The model is demonstrated with a simulated example and a real example

of space-time crime events in Cincinnati, OH, USA.

Keywords: Bayesian hierarchical model, spatial segmentation, temporal dynam-

ics, Gaussian process, logistic stick breaking process, inhomogeneous Poisson process

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
21 JUN 2012 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2012 to 00-00-2012  

4. TITLE AND SUBTITLE 
Nonparametric Bayesian Segmentation of Multivariate Inhomogeneous
Space-Time Poisson Process 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Duke University,Department of Electrical and Computer 
Engineering,Durham,NC,27708 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
to appear in Bayesian Analysis 

14. ABSTRACT 
A nonparametric Bayesian model is proposed for segmenting time-evolving mul- tivariate spatial point
process data. An inhomogeneous Poisson process is assumed with a logistic stick-breaking process (LSBP)
used to encourage piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially
contiguous segments and infers the number of segments based on the observed data. The temporal dynam-
ics of the segmentation and of the Poisson intensities is modeled with exponential correlation in time,
implemented in the form of a rst-order autoregressive model for uniformly sampled discrete data, and via
a Gaussian process with an exponential kernel for general temporal sampling. We consider and compare
two di erent in- ference techniques: a Markov chain Monte Carlo sampler, which has relatively high
computational complexity; and an approximate and e cient variational Bayesian analysis. The model is
demonstrated with a simulated example and a real example of space-time crime events in Cincinnati, OH, 
USA. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

36 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



1 Introduction

1.1 Motivating application

Assume access to the locations of various types of crimes occurring in a given city,

as a function of time. As a motivating example, in Figure 1(a) data are shown

for 3090 crimes (of 17 crime types) in Cincinnati in Jan 2008. Our focus is on

obtaining a spatial segmentation, such as that shown in Figure 1(b). In addition to

the spatial dependence of point process data, we wish to simultaneously explore time

dynamics. For example, in the crime data analysis, the crime intensity in summer

may be different statistically from that in winter, and this intensity may change

smoothly over seasons; consequently, the spatial segmentation of the city may also

vary smoothly over time.

The analysis of time dynamics helps to discover the temporal pattern of the

events and to predict the spatial segmentation at an unobserved time instance or

in the future. We desire that the analysis provide a simple summary that is useful

to police forces and city planners in targeting resources, as well as to researchers in

studying crime trends. We would like to obtain this space-time segmentation quickly,

utilizing data from different types of events, while allowing temporal interpolation

and forecasting.

1.2 Summary of proposed model

Consider the data D = {si,vit}i=1,...,M, t=1,...,T , where vit is a d-dimensional vector

of the counts of d types of events, occurring in (small) spatial region ∆(si), with

the center of the region being si ∈ R2; in the context of Figure 1, we are interested

in d types of crime. The contiguous grid of spatial regions ∆(·) is fixed in advance,

and the size of ∆(·) is very small relative to the size of the entire spatial domain,

providing justification for an approximation in which we index regions by the center

point and assume homogeneity within regions (using the model developed below, in
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(b) Segmentation of Cincinnati

Figure 1: Crime events and the segmentation of the city. In (a) 3090 crime events are shown as

black dots; in (b) each color indexes a segment with associated crime intensities in 17 crime types

(see result section for details).

the limit ∆→ 0 we have a Poisson process). There are T time points at which data

are observed, not necessarily uniformly spaced in time. Although not done here, one

may envision aligning the grid ∆(·) with the geometry of the terrain (e.g., roads).

The proposed space-time model may be summarized as

vit ∼
d∏
j=1

Poisson(λijt), λit ∼
K∑
k=1

wk(si;θkt)δλ∗kt (1)

where wk(si;θkt) ≥ 0,
∑K

k=1wk(si;θkt) = 1 for all si, δλ∗kt is a unit measure concen-

trated at λ∗kt, and λijt is the jth component of λit. This corresponds to a mixture

model, with space-time varying mixture weights wk(si;θkt) and time-varying atoms

λ∗kt.

Expression wk(s;θkt) represents a general parametric function capable of mod-

eling the probability of cluster k at spatial location s. In the details of the proposed

model, one of the {wk(s;θkt)}k=1,K is likely to be dominant (large probability) over

a contiguous region, yielding a segmentation. Since the parameters θkt change in

general with time t, a probabilistic space-time segmentation is manifested. Within

the proposed model, the prior encourages that {θkt} and λ∗kt vary smoothly as a
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function of time, and hence the model imposes smooth space-time variation in the

shape/form of the segments, and smooth temporal variation of the Poisson rates

associated with a given segment.

Two methods are considered for imposing temporal smoothness, representing

two perspectives on imposing the same temporal structure. For discrete-time data

with uniform temporal spacing, it is natural to consider the first-order autoregressive

model, i.e., AR(1), as θkpt ∼ N (ζθkp(t−1), α
−1
0 ), with θkpt the pth component of θkt,

ζ the AR(1) coefficient (with |ζ| < 1), and α0 a precision to be inferred (ζ and α0

could also be extended to depend on k and p). The log of each component of λ∗kt

may be similarly modeled.

We also consider a Gaussian process (GP) model Rasmussen and Willams (2006)

in time for each component θkpt, and for the log of each component of λ∗kt, this allow-

ing non-uniform temporal sampling. To make the AR(1) and GP models consistent,

we assume an exponential model for the GP covariance between times ti and tl,

c0c
|ti−tl|
1 , with c1 playing a role analogous to ζ in the AR(1) model, and the variance

c0 corresponds to [(1 − ζ2)α0]
−1 from the AR(1) model. The AR(1) and chosen

GP representations are therefore essentially different means of imposing the same

temporal prior, with the former restricted to uniform temporal sampling.

In addition to developing a new model for multivariate inhomogeneous space-

time Poisson process data, a contribution of this paper concerns computations, in

the form of a detailed comparison of Markov chain Monte Carlo (MCMC) and vari-

ational Bayesian (VB) inference for this class of models. The former is widely used,

but it can be computationally prohibitive for the motivating large-scale problems

considered here. Computations based on VB are attractive for large-scale modeling

studies, but many simplifying assumptions must be made.
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1.3 Related research

A natural model for exploiting spatial information, and to model point process data,

is the inhomogeneous Poisson process Diggle (2003); Møller and Waagepetersen

(2004). Researchers have recently studied nonparametric Bayesian approaches for

such applications. One of these approaches models the Poisson intensity function by

a variation of a Gaussian process (GP) Adams et al. (2009); Rathbun and Cressie

(1994); Møller et al. (1998). The log-Gaussian Cox process Møller et al. (1998),

corresponding to an intensity function modeled as an exponentiated GP, has proven

highly successful in point process Hossain and Lawson (2009) and geostatistical

modeling Diggle et al. (2010); Pati et al. (2010). Mixture models provide another

approach to representing the Poisson intensity function Wolpert and Ickstadt (1998).

Kottas and Sansó (2007) proposed a Dirichlet process (DP) mixture model of bi-

variate beta densities to model heterogeneity in intensity function. Dirichlet process

mixture models of multivariate normal densities can be also found in Ji et al. (2009);

Chakraborty and Gelfand (2010).

In Taddy (2008, 2010); Taddy and Kottas (2012) a dynamic model was proposed

for Poisson point processes, based on a novel version of the dependent Dirichlet

process. Models of this type have been applied to the data considered in Figure 1,

although the problem of segmentation was not considered. In Achcar et al. (2011)

a time inhomogeneous Poisson model was proposed, with change-points to estimate

the number of times that a given environmental standard is violated in a time

interval of interest.

Rather than modeling the Poisson intensity via a GP or a DP mixture model,

the model in (1) constitutes a mixture model with space-time mixture weights,

and the spatial locations {si} of the grid are modeled as covariates. The details

of how wk(s;θkt) is modeled encourages contiguous regions in space and time for

which a single component (cluster) dominates, encouraging a piecewise-constant

Poisson intensity function. In Heikkinen and Arjas (1998) the authors similarly
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build a piecewise constant prior model for spatial Poisson intensities, using Voronoi

tessellations. We model wk(s;θkt) via an extension of the logistic stick-breaking

process (LSBP) Ren et al. (2011). The region of interest is partitioned into a set of

contiguous small square cells, with related ideas considered in Hossain and Lawson

(2009). Within the context of the aforementioned GP construction for the temporal

dependence of θkt, related ideas were presented in the context of factor analysis

Luttinen and Ilin (2009), where GPs were used to describe the smoothness of both

spatial locations and time. An AR model for temporal dynamics was considered in

Taddy (2008, 2010).

2 Model Details

2.1 Basic construction

The proposed space-time model for data D = {si,vit}i=1,...,M,t=1,...,T is summarized

as

vit ∼
d∏
j=1

Poisson(λijt), λit ∼
K∑
k=1

wk(sit)δλ∗kt (2)

wk(sit) = pk(sit)
k−1∏
h=1

[1− ph(sit)] (3)

pk(sit) = σ(gk(sit)), for k = 1, ..., K − 1, pK(sit) = 1 (4)

gk(sit) =
J∑
j=1

βkjtK(sit, s̃j;ψk) + βk0t (5)

where (2) is repeated here from (1), for convenience. Below we explain and motivate

each term in this construction. Parameters θkt from the Introduction correspond

here to {βkjt}j=0,J and ψk. In what follows, the notation sit is meant to assign statis-

tics to spatial location si at time t; for example, wk(sit) is the kth mixture weight

as observed at si and time t. The spatial grid defining the regions {∆(si)}i=1,M is

not changing with time.
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The expression in (3), with pk(sit) ∈ [0, 1] for all sit, is suggestive of the stick-

breaking representation of the Dirichlet process Sethuraman (1994). The function

σ(x) = exp(x)/(1 + exp(x)) is associated with a logistic model, and pK(sit) = 1

such that
∑K

k=1wk(sit) = 1 for all sit. By the construction of gk(sit) in (5), the

probabilities pk(sit) have space-time variation, with such variation transferred to

the mixture weights wk(sit) via (3). Therefore, via mixture weights wk(sit) in (2)

we constitute a multivariate Poisson mixture model, with weights that vary as a

function of sit.

Function K(s, s̃j;ψk) denotes a kernel with parameter ψk. Here we employ the

radial basis function K(s, s̃j;ψk) = exp(−‖s − s̃j‖22/ψk), with J predefined kernel

centers {s̃j}j=1,J ; for convenience these J centers are here aligned with the centers

of the spatial grid defined by ∆(s̃j) (recall discussion in the Introduction). The ap-

propriate kernel parameters {ψk} will be inferred. To ease computations, we assume

a discrete set of parameters {ψ∗1, . . . , ψ∗L} over which a uniform prior is placed; each

kernel parameter ψk is assumed drawn from this finite library of parameters.

The space-time dependence of the model is manifested in how {βkjt}j=0,J and

{λ∗kt} are modeled.

2.2 Temporal modeling

When the data are sampled uniformly in time, an autoregressive (AR) temporal

model is natural. Specifically, we consider

βkjt ∼ N (ζβkj(t−1), α
−1
β ) , j = 0, . . . , J (6)

log λ∗kjt ∼ N (ξ log λ∗kj(t−1), α
−1
λ ) , j = 1, . . . , J (7)

with βkj0 = log λ∗kj0 = 0. Gamma priors are placed on αβ and αλ. Further, ζ and ξ

are drawn from a truncated normal N(0,1)(0, 1) with 0 < ζ, ξ < 1.

The collection of data may be expensive, and there may be situations for which

nonuniform temporal sampling is desired (e.g., to provide fine-scale sampling in

particular regions – seasons – of time that may be interesting). This suggests using
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a Gaussian process (GP) model Rasmussen and Willams (2006) for the temporal

variation of βkjt and log λ∗kjt.

For the kth mixture component, we let

Bk ∼ N (Bk|0,Ωk) =
J∏
j=0

N (βkj:|0,Σkj), [Σkj]il = c0c1
|ti−tl| (8)

where βkj: = [βkj1, ..., βkjT ]T , and Bk ∈ RT (J+1) denotes a vector formed by con-

catenating βkj: for j = 0, ..., J . The covariance Ωk is a block-diagonal matrix of size

T (J + 1)× T (J + 1), and each block Σkj is a T × T covariance matrix; the entry at

row i and column l, denoted as [Σkj]il, is evaluated using the GP covariance function

with the hyperparameters {c0, c1}. A gamma prior is placed on c0. Since c1 plays

the same role with ζ, we also draw c0 from the truncated normal N(0,1)(0, 1) with

0 < c1 < 1.

The Gaussian process priors are also placed on log λ∗kjt. For mixture component

k

log(λ∗kj:) ∼ N (0,Γkj), [Γkj]il = d0d1
|ti−tl| (9)

where log(λ∗kj:) = [log(λ∗kj1), ..., log(λ∗kjT )]T , and the covariance matrix Γkj ∈ RT×T ,

with the entries defined by the GP covariance function with the hyperparameters

{d0, d1}. A gamma prior and truncated normal prior are placed on d0 and d1. As

discussed in the Introduction, the considered AR(1) and GP priors are consistent,

and provide different modeling strategies for the same imposed temporal dynamics.

2.3 Model interpretation

Equations (3)-(5) are of the form of the logistic stick-breaking process (LSBP) intro-

duced in Ren et al. (2011); however, that paper did not consider Poisson data, and

space-time processes were not addressed. Recall that σ(x) ≈ 1 for x > 4; we refer to

this as the “clipping” property of the logistic, as all x larger than about 4 contribute

effectively in the same manner to σ(x); one may alternatively use a probit model, to
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achieve the same end. If βkjt > 4, then pk(s) ≈ 1 for ‖s− s̃j‖22 < ψk. This implies

via (3) that within region ‖s− s̃j‖22 < ψk, if βkjt > 4 mixture component k is highly

probable (assuming that other clusters k′ 6= k do not have large pk′(s) in the vicinity

of s̃j). The “clipping” nature of the logistic function, and large values of βkjt > 4,

encourage contiguous regions for which a given cluster k has high space-time prob-

ability of being manifested (all locations s at which gk(s) > 4 have similarly high

probability of being associated with cluster k, regardless of the exact value of gk(s)).

The weights {βkjt} play the role of assigning which regions in space-time are most

likely to be associated with a given cluster k, and ψk defines the size scale of the

cluster. Note that while we truncate the model to K mixture components, this does

not mean that all components need actually be used to represent the data. For

example, if a given βk0t is large and negative, then the kth mixture component is

unlikely to be utilized at all spatial locations at time t; K is simply an upper bound

on the number of mixture components (segment types).

3 Posterior inference

The posterior distribution of the model parameters is inferred via an MCMC sampler

and via variational Bayesian (VB) inference Beal (2003). The VB inference typically

converges fast and is computationally efficient; by contrast, MCMC convergence

may be difficult to diagnose, and a large number of iterations are required to collect

samples representing the joint posterior distribution. The detailed MCMC and VB

update equations are provided in the Appendix (we provide equations for the GP

model, with minor changes manifested for the AR case). Since VB analysis is not

as widely used in the statistics literature, for completeness we provide details on its

modeling assumptions.

Let Θ represent a vector of all model parameters; the goal is to infer the posterior

p(Θ|D). The likelihood of the data is represented p(D|Θ) and the prior on the

model parameters is denoted p(Θ). Let q(Θ; Γ) be a parametric distribution with

9



hyperparameters Γ, and consider the variational expression

F(Γ) =

∫
dΘq(Θ; Γ)ln

q(Θ; Γ)

p(D|Θ)p(Θ)
= DKL[q(Θ; Γ)‖p(Θ|D)]− lnp(D) (10)

In VB analysis the goal is to optimize the hyperparameters Γ to minimize the

Kullback-Leibler divergence between q(Θ; Γ) and the true posterior p(Θ|D); this

corresponds to adjusting Γ in q(Θ; Γ) such that F(Γ) is minimized. Note that∫
dΘq(Θ; Γ)ln q(Θ;Γ)

p(D|Θ)p(Θ)
is only a function of the likelihood p(D|Θ) and the prior

p(Θ), and not the unknown posterior; with careful selection of q(Θ; Γ), numerical

techniques akin to expectation-maximization (EM) Beal (2003) can be employed to

minimize F(Γ), with assurance of convergence to a local-optimal solution.

Focusing on the GP temporal model (the AR case is very similar), the model

parameters are

Θ = {{λ∗kj:}j=1,...,d,
k=1,...,K

, {Bk}k=1,...,K , {Zk(sit)}t=1,...,T,
i=1,...M,
k=1,...,K

, c0, c1, d0, d1}. (11)

where Zk(sit) ∼ Bernoulli(pk(sit)), with pk(sit) defined in (4). Completing the

generative process, vit ∼
∏d

j=1 Poisson(λ∗
k̂jt

) if Zk(sit) = 0 for k < k̂ and Zk̂(sit) = 1;

λ∗
k̂jt

is the jth component of vector λ∗
k̂t

.

In VB one typically assumes a factorized form for q(Θ; Γ), i.e., q(Θ; Γ) =∏
l ql(Θl; Γl), where Θl represents the lth set of model parameters and ql(Θl; Γl)

is a parametric density function with hyperparameters Γl; the union of all Θl cor-

responds to Θ. Through careful selection of ql(Θl; Γl) one may iteratively optimize

the variational expression F(Θ).

For the proposed model, q(Bk) is a multivariate normal distribution, q(Zk(sit))

is Bernoulli (with Bernoulli probability defined by a logistic function), q(ψk) is

multinomial based upon a finite library of possible parameters {ψ∗l }l=1,L, and q(c0)

and q(d0) are gamma distributions. It is not possible to define a q(λ∗kj:) that yields

closed-form updates. Therefore, the parameters λ∗kj: within the VB analysis are also

approximated at each iteration via a point estimate that maximizes the functional

F(Γ). Similarly, q(c1) and q(d1) cannot be obtained in closed form. The parameters
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c1 and d1 are updated on each VB iteration by defining parameters that maximize

the functional F(Γ).

4 Example Results

While the proposed model may appear relatively complicated, the number of hy-

perparameters that need be set is actually modest. We compare the AR-LSBP and

GP-LSBP models for imposing a prior on the temporal dependence with a simpler

model in which the priors for each time point t are independent. In the context of

this independent LSBP (ind-LSBP), we impose

βkjt ∼ N (0, α−1kjt) , αkjt ∼ Gamma(a0, b0) (12)

and we set a0 = b0 = 10−6 as in the relevance vector machine (RVM) Tipping (2001).

The same gamma priors are placed on αβ and αλ for the AR-LSBP model, and on

c0 and c1 for the GP-LSBP model. In all examples the truncation level on the LSBP

was set at K = 20, and the results are insensitive to this parameter, as long as it

is large relative to the actual number of clusters/segments inferred by the model.

Finally, we must specify the library for kernel parameters {ψk}k=1,K ; the manner in

which these are specified is discussed when presenting the specific examples.

For uniform temporal sampling, the AR(1) and GP imposition of temporal dy-

namics are theoretically identical, for the imposed GP covariance. Nevertheless,

even for uniform temporal sampling we show results for both of these implementa-

tions, because the details of the numerics dictates that the two models are slightly

different in practice. Specifically, within the GP model a point estimate is employed

for the kernel hyperparameters, with this obviously unnecessary for the direct AR(1)

model. The comparison allows examination of the accuracy of this approximation

within the GP inference, relative to the direct AR(1) implementation; this sheds

light on the quality of the computations for non-uniform temporal sampling, where

the GP implementation is required.
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Figure 2: Simulation example. The high-intensity window moves gradually from [5,10] to [10,

15] when time increases.

4.1 Simulation Example

We assume the data are constructed by a total of 9 equally spaced time instances, t =

1, 2, ..., 9. At each time we randomly draw 50 spatial locations in one-dimensional

space from a uniform distribution with support [0, 20], denoted as sit ∼ Uniform[0, 20],

i = 1, ..., 50, t = 1, ...9. For each location, we draw an event count vit from a Poisson

distribution with the intensity parameter λit. To represent the time dynamics, we

let λit = 20 when 5 + 5
8
(t− 1) ≤ sit ≤ 10 + 5

8
(t− 1), and λit = 1 otherwise. By this

setting the high-intensity window moves gradually from [5,10] to [10, 15] when time

t increases. Note that here sit ∈ R1 and vit ∈ R1. The kernel centers are defined

as s̃j = 0.5(j − 1) for j = 1, ..., J . The data are depicted in Figure 2. Within the

analysis, the library of kernel parameters are the union of the following two sets:

{0.05, 0.1, 0.05, . . . , 0.5} and {0.5, 1, 1.5, . . . , 5}.

The mean results from VB are shown in Figure 3, in which the inferred Poisson

rate is constituted; for these and all VB results the computations were stopped when
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the change in the variational bound changed by 10−4. Further, all VB results are

initialized at random. The VB results presented below represent a local-optimal

solution, which forms one source of error, and this is compounded by the factor-

ized approximation to the posterior. Nevertheless, the VB implementation of the

GP-LSBP and AR-LSBP model yields results comparable to that of the MCMC

implementation. When implementing MCMC, a total of 10,000 iterations are run,

with the first 1000 discarded as burn-in. On the same PC (and both codes written

in Matlab), the VB GP-LSBP and AR-LSBP results required approximately 158

seconds of CPU time, while the VB ind-LSBP results required approximately 96

seconds. In contrast, the GP-LSBP and AR-LSBP results based on the MCMC

sampler required 6517 seconds, and ind-LSBP required 2913 seconds (109 and 48

minutes, respectively). The software was not optimized, and these numbers there-

fore represent a relative view of computational expense of the VB and MCMC

solutions.

From Figure 3 it is observed that, for the VB solution, incorporation of temporal

smoothness in the GP-LSBP model yields significant improvements in the inferred

Poisson rate, as compared to the VB ind-LSBP solution (with temporal dependence

not accounted for in the prior); the AR-LSBP model performed similar to GP-LSBP.

It appears that the prior constraint imposed by GP/AR within the VB solution plays

an important role in mitigating the underlying VB approximations. By contrast,

for the MCMC results improvements are manifested via GP-LSBP and AR-LSBP

relative to ind-LSBP, but in this case the differences are less dramatic (plots of

MCMC results are not shown, for brevity).

We next examine the generative performance of the proposed model. After the

model has been learned, either via VB or MCMC, we randomly generate 100 new

test data, following the same procedure that generated the training data. We then

compute the average log-likelihood and the accuracy rate of segmentation from the

learned GP-LSBP, AR-LSBP and ind-LSBP models. The accuracy rate of segmen-

tation is defined as the number of test data points segmented correctly as a fraction

13
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(a) GP-LSBP inferred based on VB
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Figure 3: Segmentation and latent intensity inferred by VB: Comparison between GP-LSBP

and ind-LSBP, considering the simulated-data example. The AR-LSBP results are similar to the

GP-LSBP results, and are omitted for brevity.
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of total number of test data points. The results are summarized in Table 1. We

find that the GP-LSBP and AR-LSBP models achieve a higher likelihood and accu-

racy of segmentation compared to the ind-LSBP. Note that the differences between

GP-LSBP, AR-LSBP and ind-LSBP are relatively modest for the MCMC solution,

while there are again marked advantages in the GP-LSBP and AR-LSBP solutions

relative to ind-LSBP when employing VB inference.

Table 1: Comparison of generative performance between AR-LSBP, GP-LSBP and ind-LSBP,

on simulated data.

Average log-likelihood Accuracy rate of segmentation
Method

VB MCMC VB MCMC

AR-LSBP -3.702 -1.749 0.9796 0.9801

GP-LSBP -3.882 -2.082 0.9765 0.9757

ind-LSBP -15.544 -2.274 0.9478 0.9741

Table 2: Comparison of prediction performance between AR-LSBP, GP-LSBP and ind-LSBP.

Average log-likelihood Accuracy rate of segmentation

Nmiss AR-LSBP GP-LSBP ind-LSBP AR-LSBP GP-LSBP ind-LSBP

VB MCMC VB MCMC VB MCMC VB MCMC VB MCMC VB MCMC

1 -3.948 -1.975 -4.102 -2.123 -21.194 -2.641 0.9792 0.9794 0.9767 0.9758 0.7165 0.9545

2 -4.211 -2.241 -4.526 -2.473 -27.195 -3.077 0.9787 0.9786 0.9761 0.9754 0.6669 0.9581

3 -4.468 -2.573 -4.718 -2.652 -27.776 -3.507 0.9787 0.9785 0.9763 0.9752 0.6458 0.9379

4 -4.882 -2.740 -5.133 -3.108 -26.682 -3.963 0.9780 0.9783 0.9752 0.9740 0.6647 0.9274

5 -5.801 -3.014 -5.987 -3.521 -31.217 -4.316 0.9763 0.9770 0.9741 0.9633 0.6131 0.9066

Finally we test the prediction performance of the model. We first generate data

D = {si, vit}i=1,...,50, t=1,...,9 as discussed above, and then randomly select Nmiss time

instances t̂1, ..., t̂Nmiss
from t = 1, ..., 9, and this constructs our test data Dtst; the

training data Dtrn is composed of the data in D but not in Dtst. We learn the

model based on VB or MCMC analysis with Dtrn, and predict the kernel weights

β̂kjt̂ and Poisson intensities λ̂∗
kt̂

at time t̂. The average log-likelihood and accuracy

of segmentation are evaluated based on the prediction results of Dtst, given only the

spatial locations ŝit̂. We perform 100 trials, and at each trial Nmiss time instances

are selected randomly to construct Dtst. The average results are shown in Table 2.
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Only the GP-LSBP results are fully principled in this analysis, where we use the

learned parameters of the GP covariance matrix to interpolate to new time points

Rasmussen and Willams (2006). The AR model implicitly assumes that the data

are sampled uniformly in time, while the ind-LSBP has no principled means of in-

terpolating to missing time points. Nevertheless, as a comparison, for the AR-LSBP

computations in this test the AR component was simply applied to consecutive ob-

served time points, essentially assuming that the temporal variation was smooth,

even if not sampled uniformly. To interpolate to new points using the learned AR-

LSBP and ind-LSBP results, to obtain model parameters at any new point t̂, we

average the learned model parameters from the two closest observed points, before

and after t̂. From Table 2 it is observed that again for the VB solution, there is

a marked advantage manifested via the GP-LSBP and AR-LSBP priors, as com-

pared to ind-LSBP. For the MCMC solution, there is also a noticeable advantage

manifested via the GP-LSBP and AR-LSBP solutions, particularly for segmenta-

tion accuracy for relatively large Nmiss. Based upon the average log-likelihood, we

note a small but consistent advantage of the AR-LSBP model over the GP-LSBP

counterpart, for both VB and MCMC computations. This observation on simulated

data will carry over to the analysis of real data.

4.2 Crime Data

We investigate crime events in Cincinnati, OH, USA; the data are available online

at http://www.cincinnati-oh.gov. The data include the date, time, location and

other information of all reported crimes in Cincinnati since 2006. This data set was

first studied in Taddy (2008, 2010), where a mixture of beta distributions was em-

ployed to model the event density ν(s), and to discover the evolution of the density

with time. In our problem we seek to segment the city into contiguous regions, with

crime events at each region characterized by a common constant Poisson intensity

vector.
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We consider 117,314 crime events within the city, reported from January 2006 to

December 2008. Each crime is assigned a uniform crime reporting (UCR) code. In

total more than 170 different UCR codes describe a variety of crimes. These crime

events can be categorized into 17 different crime types, based on the prefix of their

UCR codes. They are: 1) murder, 2) rape, 3) robbery, 4) assault with weapon,

5) burglary, 6) nonvehicle theft, 7) vehicle theft, 8) general assault, 9) arson, 10)

forgery, 11) fraud, 12) receiving stolen property 13) vandalism, 14) weapons related

but no physical harm, 15) sexual crime, 16) children related, 17) general harassment.

As an example, the locations (latitude and longitude coordinates) of the 3090 crime

events in January 2008 are shown in Figure 1(a). Based on the locations of all the

117,314 crime events, the observation window is considered within a rectangular

region of [39.06◦, 39.24◦] latitude and [-84.70◦, -84.35◦] longitude.

We construct the data D = {si,vit}i=1,...,M, t=1,...,T as follows. The total crime

events within one month are considered as one time instance, and therefore there are

in total 36 time points. At each time, the observation window is divided into 15,750

small square grids (90 rows by 175 columns) of size 0.002◦ × 0.002◦, and the event

location sit is defined as the center of each small square area, with this denoted as

∆(si). The count vijt is then the number of Type j crimes within ∆(si) over the

corresponding month indexed by t. This produces a 17-dimensional count vector vit

at si for i = 1, ..., 15750 and t = 1, ..., 36. Related research in Taddy (2008, 2010)

applied marked Poisson processes to address the crime types, regarding each crime

type at sit as a random mark. Here we attempt to segment the city by considering

all the crime types within a local region ∆(sit) as a correlated variable (a vector),

instead of treating each event as a random type.

The proposed GP-LSBP, AR-LSBP and ind-LSBP models are inferred via VB

and MCMC, with truncation level K = 20. The kernel centers are uniformly spaced

every 0.04◦ (latitude and longitude) in the observation window, with a total of 60 ker-

nel centers defined. The library of kernel parameters {ψ∗l }l=1,L are the union of the

following sets: {0.006◦, 0.012◦, 0.018◦, . . . , 0.06◦} and {0.06◦, 0.12◦, 0.18◦, . . . , 0.6◦}.
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On the same PC, the VB GP-LSBP and AR-LSBP results require approximately

2.8 hours of CPU time, while the VB ind-LSBP results required approximately 1.3

hours. By contrast, due to the large size of the data, 3000 MCMC sample are em-

ployed, with 1000 discarded as burn-in. With the same PC, the MCMC GP-LSBP

and AR-LSBP results required approximately 47.5 hours. We also considered 10,000

MCMC samples, with 1000 discarded as burn-in (at very significant computational

cost), with little change in the results relative to those presented below.

Figure 4(a) shows the VB-based segmentation of the entire spatial observation

window at 36 time instances, using GP-LSBP (similar results were found using AR-

LSBP, omitted for brevity). The city is segmented into 4 regions (inferred by the

model), and the segmentation changes smoothly with time. For comparison, Figure

4(b) shows the segmentation results obtained by applying an independent LSBP

(VB computations) at each time instance. It is observed that with GP priors the

proposed model presents a spatial segmentation more consistently over time and

spatially more contiguously than ind-LSBP.

We are also interested in examining the clustering manifested by the MCMC

computations, with this complicated by label switching between samples. We com-

pute an MCMC clustering that may be compared to the VB results as follows. We

consider one spatial location from Segment 1 in Figure 4, denoted s∗1. Based upon

the MCMC collection samples, for each other spatial location in the scene s 6= s∗1,

we compute the probability that position s and s∗1 are in the same cluster. All

positions s with high probability of such clustering should (ideally) constitute a

spatial region similar to Segment 1 inferred via VB. In Figure 5(a) we show MCMC

results for Segment 1, and the high-probability regions (red) do indeed align well

with the VB results in Figure 4. In Figure 5(b) we compute similar MCMC results

for Segment 2, and in this case the high-probability spatial locations are aligned well

with the VB results for Segment 2 in Figure 4. We found in general good agreement

between the VB and MCMC segmentation results for GP-LSBP and AR-LSBP for

these data.
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Figure 4: Comparison of spatial segmentation for crime data in Cincinnati, OH from January

2006 to December 2008 (VB results). Each color represents a segment with an associated intensity

vector λ∗
kt, and there are totally four segments inferred: 1 - dark blue, 2 - light blue, 3 - yellow,

and 4 - dark red. (a) GP-LSBP, (b) ind-LSBP
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Figure 5: Comparison of spatial segmentation for crime data in Cincinnati, OH from January

2006 to December 2008 (MCMC results). (a) Segment 1, (b) Segment 2, where these segments are

related to the results in Figure 4(a).
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Figures 6(a)-(d) show the dynamic change of the VB-inferred Poisson intensities

for each segment. To make the figure easier to read, we only plot components 3, 5 and

6 from the 17-dimensional vector λ∗kt; these components correspond to crime types

“robbery”, “burglary”, and “nonvehicle theft”, respectively. From these figures

we observed that in all segments the crime intensities fluctuated periodically over

season. Generally in summer there were more crime events of all types than than

in winter. The overall crime intensities varied with regions. Segments 4 was in the

downtown region, and had much more crime events compared to other regions. In all

four regions Type 6 crime (nonvehicle theft) was dominant. In addition, the crime

patterns were different in different regions. For example, Segment 4 had relatively

less Type 5 crime (burglary), while in other 3 segments, the intensity of Type 5

crime was almost half of Type 6 crime. In Segments 4, Type 3 crime (robbery) was

prevalent, while Segment 1 had relatively less Type 3 crime. For a comparison, we

also present the MCMC-inferred Poisson intensities of Segment 3, as a representative

(typical) example. It is observed that the MCMC and VB results are in generally

good agreement, for the GP-LSBP and AR-LSBP models.

These results may be used by police to assign resources (personnel) to segmented

regions in a consistent manner, to address varying levels of crimes. The segments

typically change with season, and the spatial distribution of resources may be tem-

porally adjusted as well. By relating the demographics of regions to the spatial

segments (we didn’t have access to such demographics), one may deduce relation-

ships between types of crimes and the types of people living and working in given

regions, of interest to criminologists and city planners.

Following the same procedure as in the simulated example, we now examine

the prediction performance of our model for the crime data. We randomly select

Nmiss time instances to construct a test set, and let the remaining data be the

training set. Ten random trials are performed and the comparison of average log-

likelihood between GP-LSBP, AR-LSBP and ind-LSBP inferred by VB is shown

in Table 3. Since in this real application there is no ground truth, we cannot
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(b) Segment 2: Light blue region
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(c) Segment 3: Yellow region
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(d) Segment 4: Dark red region

0 3 6 9 12 3 6 9 12 3 6 9 12
0

2

4

6

8

10

12

14

Month

In
te

n
s
it
y

(e) Segment 3 inferred by MCMC

Figure 6: Inferred intensity vector λ∗
kt associated with the segments shown in Figure 4(a).

Only 3 crime types are shown here to make the figure easy to read.
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evaluate the accuracy rate of segmentation as done in the simulated example. From

Table 3 GP-LSBP and AR-LSBP consistently achieve higher likelihood than the

independent LSBP for various Nmiss values. Note also that for these real data there

is less of a difference between the AR/GP-LSBP and ind-LSBP results for the VB

solution, as compared to the synthetic data considered above. We do not perform

this experiment for MCMC inference, as the computational requirements needed to

perform these many experiments are prohibitive with this large data set (however,

in isolated tests, the results were slightly better than the VB-based GP-LSBP and

AR-LSBP models, consistent with the simulated example above).

Table 3: Comparison of average log-likelihood in the prediction for the crime data (VB infer-

ence).

Nmiss 1 2 3 4 5 6

AR-LSBP -6.131 -6.352 -7.204 -7.631 -7.957 -8.338

GP-LSBP -6.570 -6.762 -7.713 -7.965 -8.426 -8.721

ind-LSBP -8.666 -9.247 -9.595 -8.840 -9.848 -8.762

4.3 Pearson residuals

Following Taddy (2010), we check model quality via computation of Pearson resid-

uals (see Baddeley et al. (2005) for a detailed discussion of residuals for spatial

point processes). For the modeling framework considered here, the Pearson residual

reduces to

R(∆(sit), λ̂it) =
nit√
λ̂it
−
√
λ̂it (13)

where nit is the number of events in region ∆(sit) and λ̂it is the inferred Poisson

rate parameter in small region ∆(sit). Ideally the residual should be close to zero,

if the underlying Poisson assumption is valid. Note that within the proposed model

we have a vector of counts vit, and therefore we may compute the residual for each

of the different types of crimes.
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Figure 7: Pearson residuals for “nonvehicle theft,” using VB inference; best viewed electrically,

zoomed in. (a) ind-LSBP, (b) GP-LSBP, (c) AR-LSBP.
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From Figure 7, which is based upon VB inference, we observe that the Pearson

residuals tend to decrease substantially based upon a model that explicitly imposes

temporal smoothness (note that the residuals are significantly lower for GP-LSBP

and AR-LSBP, relative to ind-LSBP). Further, the AR-LSBP residuals are smaller

than those of the GP-LSBP. Although we omit the MCMC results for brevity, sim-

ilar phenomena was observed in that case. The residuals tend to be small, in the

range [-2,2], with the larger values manifested on the edges of segments, as might

be expected (segment interfaces are characterized typically by abrupt changes in

statistical properties).

5 Conclusions

A Bayesian hierarchical model has been presented for segmenting time-evolving

point process data, when the events are in vector form. The spatial-dependent

point process is modeled using a generalization of a Poisson process, with piecewise

constant Poisson intensities defined within the observation window. The logistic

stick-breaking process is employed to favor spatially contiguous segments, and GP

and AR models are considered for imposition of temporal smoothness of the seg-

mentation and the Poisson intensity.

In addition to developing the model, a contribution of this paper concerns a

detailed comparison between MCMC sampling and a VB approximation. For both

the synthetic and real data, it was found that the GP-LSBP and AR-LSBP re-

sults computed via VB and MCMC were in close agreement, and the imposition

of temporal smoothness manifested via GP/AR (compared to treating the differ-

ent temporal samples independently) yielded significant improvements in the VB

results. While the VB results are approximate, and are subject to local-optimal

solutions (although the GP/AR models seemed to mitigate this to some extent),

the VB approach provides significant advantages with regard to computations. For

the large crime data set considered, while the MCMC results are in principle con-
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vergent, if run for enough samples, this attractiveness is mitigated by the very

significant computation time required to realize a number of collection samples to

assure that we are indeed sampling from the posterior. Given that computational

requirements will in practice mitigate the ability to collect as many MCMC sam-

ples as desired (and therefore MCMC is also an approximation), the VB solution

appears to be an attractive option. However, the results presented here indicate

that imposition of as much information as possible (here smoothness via GP/AR)

is desirable. In future research it is of interest to consider online VB analysis Hoff-

man et al. (2010), which provides further acceleration for large datasets, and it is

appropriate for time-dependent data observed in an online/sequential manner, like

the time-evolving crime data considered here.
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Appendix: MCMC and VB Update Equations

5.1 MCMC Inference

The MCMC computations are performed using Gibbs sampling where the condi-

tional density functions are analytic, and samples are drawn from the conditional

density functions via Metropolis-Hastings when not analytic. The update equations

are summarized as follows.

• Sample λ∗kj: from their respective posteriors conditional on {Zk (sit)} and

{νijt}

p
(
λ∗kj:

∣∣−) ∝ T∏
t=1

M∏
i=1

Poisson
(
νijt|λ∗kjt

)I(ci=k) lnN
(
λ∗kj:

∣∣ 0,Γkj

)
. (14)

It is not possible to sample λ∗kj: from the full conditions. We update each

λ∗kj: by the Metropolis-Hastings algorithm. When updating λ∗kj:, the proposed

λ
∗(τ+1)
kj: is generated from the following distribution

q
(

lnλ
∗(τ+1)
kj: | lnλ∗(τ)kj:

)
= N

(
lnλ

∗(τ)
kj: , (d0 + d2)IT

)
. (15)

The acceptance probability for the proposed λ
∗(τ+1)
kj: is min

(
1, α

(
λ
∗(τ+1)
kj: ,λ

∗(τ)
kj:

))
,

where

α
(
λ
∗(τ+1)
kj: ,λ

∗(τ)
kj:

)
= exp

(
−1

2
λ
∗(τ+1)T
kj: Γ−1kj λ

∗(τ+1)
kj: +

1

2
λ
∗(τ)T
kj: Γ−1kj λ

∗(τ)
kj:

)
·

T∏
t=1


(
λ
∗(t+1)
kjt

λ
∗(t)
kjt

) M∑
i=1

wk(sit)υij1−1

exp

[
M∑
i=1

wk(sit)
(
λ
∗(τ+1)
kjt − λ∗(τ)kjt

)] . (16)

• Sample βk:i from their respective posteriors conditional on {Zk (sit)}

p (Bk| −) ∝
T∏
t=1

M∏
i=1

p (Zk (sit)|Bk)
J∏
j=1

N (βkj:|0,Σkj). (17)
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Reorder the entries of Bk (and the associated Ωk) in (8) such that Bk =

[βk:1, · · · ,βk:T ]T , then we obtain

p (Bk| −) ∝ exp

{
−

T∑
t=1

M∑
i=1

f (ηkit)β
T
k:tϕkitϕ

T
kitβk:t

}

· exp

{
−1

2
BT
k Ω−1K Bk +

T∑
t=1

M∑
i=1

(2Zk (sit)− 1)ϕTkitβk:t

}
.(18)

So, Bk can be draw from a normal distribution as

p (Bk| −) = N
(
Bk;

(
Ω−1k +Uk

)−1
Yk,
(
Ω−1k +Uk

)−1)
, (19)

whereUk is a (J + 1)T×(J + 1)T block-diagonal matrix with the t-th (J + 1)×

(J + 1) block expressed as ukt = 2
M∑
i=1

f (ηkit)φkitφ
T
kit and Yk is a (J + 1)T ×1

vector formed by concatenating the T vectors ykt =
M∑
i=1

(
Zk (sit)− 1

2

)
φkit, t =

1, · · · , T . In these expressions φkit = [1,K (sit, s̃1;ψk) , · · · ,K (sit, s̃J ;ψk)]
T .

The parameter f (ηkit) = ϕTkitβk:t.

• Sample Zk (sit) from their respective posteriors conditional on Bk and {νijt}.

According to the definition of LSBP,

p (Zk (sit) = 1| −)

=


σ(gk(sit))p(νit|λ∗kt)

σ(gk(sit))p(vit|λ∗kt)+σ(−gk(sit))p(νit|λ∗k′t)
, if Zl (sit) = 0 for l < k

σ (gk (sit)) , if ∃ l < k, such that Zl (sit) = 1
(20)

where k′ is the first integer larger than k, associated with non-zero indicator.

The equation can be expressed as

p (Zk (sit) = 1| −) =
1

1 + exp (−ρkit)
, (21)

with

ρkit =
∏
l<k

(1− Zl (sit)) log p (νit|λ∗kt)−∑
k′>k

Zl (sit)
∏
l<k′
l 6=k

(1− Zl (sit)) log p ((νit|λ∗k′t)) + ϕTkitβk:t. (22)
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• With a uniform prior assumed on the kernel parameter library (a predefined

finite set), the posterior distribution for each ψk can be represented as

p(ψk = ψ∗l ) ∝
T∏
t=1

M∏
i=1

σ(glk(sit))
wk(sit)

T∏
t=1

M∏
i=1

∏
k′>k

(1− σ(glk(sit)))
wk′ (sit). (23)

For each specific k from k = 1, ..., K, we have the following update equation

ψk = ψ∗rk , rk ∼ Mult (pk1, ..., pkL) , pkj =
p(ψk = ψ∗j )∑L
l=1 p(ψk = ψ∗l )

. (24)

We sample the kernel parameters based on the multinomial distributions from

a given discrete set in each MCMC iteration.

• Sample c0 from its posteriors conditional on {Bk} and {a0, b0}.

p(c0) ∝ Gamma (c0; a0, b0)
K∏
k=1

N (Bk; 0,Ωk) . (25)

Therefore, c0 can be drawn from a Gamma distribution

p(c0) = Gamma
(
c0; ã0, b̃0

)
, (26)

where ã0 = a0 + 0.5KT (J + 1) and b̃0 = b0 + 0.5
K∑
k=1

J∑
j=0

βTkj:Σ̃
−1
kj βkj: with

[Σ̃kj]il = c1
|ti−tl|.

• Sample c1 from its posterior conditional on {Bk}

p(c1) ∝ N(0,1)(c1; 0, 1)
K∏
k=1

N (Bk; 0,Ωk) . (27)

When updating c1, the proposed c
(τ+1)
1 is generated from the following distri-

bution

q
(
c
(τ+1)
1 |cτ1

)
= N(0,1)

(
c
(τ+1)
1 ; cτ1, 1

)
. (28)

The acceptance probability for the proposed c
(τ+1)
1 is min

(
1, α(c

(τ+1)
1 , cτ1)

)
,

where

α(c
(τ+1)
1 , cτ1) =

|Σ−1kj (cτ1)|
K(J+1)

2

|Σ−1kj (c
(τ+1)
1 )|

K(J+1)
2

exp

{
1

2

(
c
(τ+1)
1

2
− c(τ+1)

1

2
)}

· exp

{
1

2

(
K∑
k=1

J∑
j=0

βTkj:Σ
−1
kj (cτ1)βkj: −

K∑
k=1

J∑
j=0

βTkj:Σ
−1
kj (c

(τ+1)
1 )βkj:

)}
.(29)
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• Similarly, d0 can be drawn from a Gamma distribution

p(d0) = Gamma
(
d0; ã0, b̃0

)
, (30)

where ã0 = a0 +0.5dKT and b̃0 = b0 +0.5
K∑
k=1

d∑
j=1

lnλ∗Tkj:Γ̃
−1
kj lnλ∗kj: with [Γ̃kj]il =

d1
|ti−tl|.

• Similar with c1, we update d1 by the Metropolis-Hastings algorithm. The

proposed d
(τ+1)
1 is generated from the following distribution

q
(
d
(τ+1)
1 |dτ1

)
= N(0,1)

(
d
(τ+1)
1 ; dτ1, 1

)
. (31)

The acceptance probability for the proposed d
(τ+1)
1 is min

(
1, α(d

(τ+1)
1 , dτ1)

)
,

where

α(d
(τ+1)
1 , dτ1) =

|Γ−1kj (cτ1)| dK2

|Γ−1kj (c
(τ+1)
1 )| dK2

exp

{
1

2

(
d
(τ+1)
1

2
− d(τ+1)

1

2
)}

·exp

{
1

2

(
K∑
k=1

d∑
j=1

lnλ∗Tkj:Γ
−1
kj (dτ1)lnλkj: −

K∑
k=1

d∑
j=1

lnλ∗Tkj:Σ
−1
kj (d

(τ+1)
1 )lnλkj:

)}
.(32)

5.2 VB inference

The log-normal priors placed on the Poisson intensities introduce non-conjugacy,

which results in difficulty for VB inference. Therefore, we employ a point estimate

for the Poisson intensities, by maximizing the lower bound F . For the GP hy-

perparameters c1 and d1, the truncated normal prior also introduce non-conjugacy.

Their posteriors are also inferred from point estimation by maximizing the VB lower

bound. The update equations of the posterior inference of Θ are summarized below.

In our model,

Θ = {{λ∗kj:}j=1,...,d,
k=1,...,K

, {Bk}k=1,...,K , {Zk(si,t)}t=1,...,T,
i=1,...M,
k=1,...,K

, c0, c1, d0, d1}.

• The lower bound for the Poisson intensity λ∗kj: may be derived as

F(λ∗kj:) ∝ −
1

2
ΛT
k,jΓ

−1
kj Λkj −QT

kje
Λkj +RT

kjΛkj + constant (33)
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where Λkj = log(λ∗kj:),Rkj = [
∑M1

i=1〈wk(si1)〉νij1−1, · · · ,
∑M

i=1〈wk(siT )〉νijT −

1]T , and Qkj = [
∑M1

i=1〈wk(si1)〉, · · · ,
∑M

i=1〈wk(siT )〉]T , with 〈·〉 denoting the

expectation such that 〈wk(sit)〉 = q(wk(sit) = 1) (see Section 2 for detail of

wk(sit)). The point estimate for λ∗kj: can be updated at each VB iteration by

maximizing the lower bound F(λ∗kj:). One may easily examine that F(λ∗kj:)

is a concave function, and therefore a global maximum can be obtained by

any appropriate convex optimization method. Note that if Γ−1kj → 0 (setting

large variance for the prior distribution), by taking the derivative of (33) and

setting it to zero, we have λ∗kj: = eΛkj → Rkj/Qkj, which is consistent with the

update equation if independent gamma priors are placed on λ∗kjt for t = 1, ..., T .

Therefore, the GP priors represented in Γkj introduce the correlation among

the components of λ∗kj:.

• To update the variational distribution for the kernel weights βkjt, note that the

logistic link function σ(·) is not within the exponential family and therefore

introduces the nonconjugacy. We here follow Jaakkola and Jordan (1998) by

introducing a variational bound using the inequality

σ(y)z[1− σ(y)]1−z = σ(x) ≥ σ(η) exp(
x− η

2
− f(η)(x2 − η2))

where x = (2z − 1)y, f(η) = tanh(η/2)
4η

, and η is a variational parameter. An

exact bound is achieved as η = ±x.

If we reorder the entries of Bk (and the associated Ωk) in (8) such that Bk =

[βk:1, ...,βk:T ]T , the update equation for Bk can be expressed as

q(Bk) = N
(
(Ω−1k +Uk)

−1Yk, (Ω
−1
k +Uk)

−1) (34)

where Uk is a (J + 1)T × (J + 1)T block-diagonal matrix with the tth (J +

1)× (J + 1) block expressed as

ukt = 2
M∑
i=1

f(ηkit)φkitφ
T
kit
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and Yk is a (J + 1)T × 1 vector formed by concatenating the T vectors

ykt =
M∑
i=1

(
〈Zk(sit)〉 −

1

2

)
φkit, t = 1, ..., T.

In above expressions φkit = [1,K(sit, s̃1;ψk), ...,K(sit, s̃J ;ψk)]
T .

The variational parameters ηkit are then updated as

η2kit = φTkit〈βTk:tβk:t〉φkit (35)

where 〈βTk:tβk:t〉 = COV (βk:t,βk:t) + 〈βk:t〉〈βk:t〉T and it may be evaluated

from q(Bk) with the mean and variance associated with time t.

• The variational distribution for the binary indicator Zk(sit) may be updated

as

q (Zk(sit) = 1) =
1

1 + exp(−ρkit)
(36)

with

ρkit =
∏
l<k

(1− 〈Zl(sit)〉) log p(νit|λ∗kt)−
∑
k′>k

〈Zk′(sit)〉
∏
l<k′
l 6=k

(1− 〈Zl(sit)〉) log p(νit|λ∗k′t)

+
J∑
j=1

〈βkjt〉K(sit, s̃j;ψk) + 〈βk0t〉

where log p(νit|λ∗kt) is the data log-likelihood from the Poisson distribution

such that log p(vit|λ∗kt) = log
(∏d

j=1 Poisson(νijt|λ∗kjt)
)

, and the expectation

〈βkjt〉 can be obtained from q(Bk).

• Due to the non-conjugacy of the sigmoid function, we cannot acquire a vari-

ational distribution for ψk. However, we can sample it from its posterior dis-

tribution by establishing a discrete set of potential kernel widths {ψ∗l }l=1,··· ,L.

The posterior distribution for each ψk is represented as

p(ψk = ψ∗l ) ∝ exp{
T∑
t=1

M∑
i=1

〈wk(sit)〉〈log σ
(
glk(sit)

)
〉}

· exp{
T∑
t=1

M∑
i=1

∑
k′>k

〈wk′(sit)〉〈log
(
1− σ

(
glk(sit)

))
〉}, (37)
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where glk(sit) =
∑J

j=1 βkjtK(sit, s̃j;ψ
∗
l ) + βk0t. The detailed calculations of

〈log σ
(
glk(sit)

)
〉 and 〈log

(
1− σ

(
glk(sit)

))
〉 can be found in Ren et al. (2011).

• The variational distribution for c0 may be updated as.

q(c0) = Gamma
(
c0; ã0, b̃0

)
, (38)

with ã0 = a0 + 0.5KT (J + 1) and b̃0 = b0 + 0.5
K∑
k=1

J∑
j=0

T∑
i=1

T∑
l=1

[Σ̃−1kj ]il〈βkjiβkjl〉

with [Σ̃kj]il = c1
|ti−tl|.

• The VB lower bound for c1 may be derived as

F(c1) = logN(0,1)(c1; 0, 1) +
K∑
k=1

logN (Bk; 0,Ωk) + constant. (39)

The point estimate for c1 can be updated at each VB iteration by maximizing

the lower bound F(c1).

• Since point estimate of λ∗Tkj: is employed as each VB iteration, the variational

distribution for d0 may be the same with (30)

q(d0) = Gamma
(
d0; ã0, b̃0

)
, (40)

where ã0 = a0 + 0.5dKT and b̃0 = b0 + 0.5
K∑
k=1

d∑
j=1

lnλ∗Tkj:Γ̃
−1
kj lnλ∗kj:.

• Similarly, the lower bound for d1 is

F(d1) = logN(0,1)(d1; 0, 1) +
K∑
k=1

d∑
j=1

logN (Λkj; 0,Γkj) + constant. (41)

and the point esitimation for d1 is obtained by maximizing F(d1).

By following (33)-(41), the model parameters and GP hyperparameters can be

updated iteratively until convergence. In our experiment, we observed fast conver-

gence; typically the relative change of the lower bound reduces to 10−4 within 100

iterations.
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